MATH 140A Review: Inequalities and Absolute Values

1. Prove that if $0 < a_1 < a_2$ and $0 < b_1 < b_2$, then $a_1 \cdot b_1 < a_2 \cdot b_2$.

Solution:

Proof. Since $b_1 > 0$, then $a_1 \cdot b_1 < a_2 \cdot b_1$. Since $a_2 > 0$, then $a_2 \cdot b_1 < a_2 \cdot b_2$. Thus, $a_1 \cdot b_1 < a_2 \cdot b_2$.

2. Let n be a natural number. Determine for what values of n the following holds

$$\left| \frac{n-1}{3n+1} - \frac{1}{3} \right| < \frac{1}{2020}.$$

Solution: We have that

$$\left| \frac{n-1}{3n+1} - \frac{1}{3} \right| < \frac{1}{2020} \tag{1}$$

if and only if

$$-\frac{1}{2020} + \frac{1}{3} < \frac{n-1}{3n+1} < \frac{1}{2020} + \frac{1}{3}.$$

By multiplying, (1) holds if and only if

$$-\frac{3n+1}{2020}+n+\frac{1}{3} < n-1 < \frac{3n+1}{2020}+n+\frac{1}{3}.$$

By adding, (1) holds if and only if

$$-\frac{3n+1}{2020} < -\frac{4}{3} < \frac{3n+1}{2020}.$$

Hence, (1) holds if and only if

$$\frac{4}{3} < \frac{3n+1}{2020}.$$

That is, (1) holds if and only if

$$\left(\frac{4}{3} \cdot 2020 - 1\right)/3 < n.$$

3. We say that a function f is increasing if f(x) < f(y) when x < y. We say that f is decreasing if -f is increasing. Let $f(x) = \frac{1}{x^p}$ for x > 0. Without taking the derivative, determine for what values of $p \in (-\infty, \infty)$ the function f is decreasing on x > 0 and increasing on x > 0.

Solution: Let 0 < x < y. Since the function $f(z) = z^p$ is increasing for p > 0, then $x^p < y^p$. By multiplying both sides to the other side, we get that f(y) < f(x). Hence, f is decreasing for p > 0. f is neither decreasing nor increasing for p = 0. Since the function $f(z) = z^p$ is decreasing for p < 0, then 0 < x < y implies that $x^p > y^p$. By multiplying both sides to the other side, we get that f(y) > f(x). Hence, f is increasing for p < 0.